[Circuit] 平均功率

電路知識:平均功率 (實功率)
簡介:推導平均功率
  • 實功功率(real power,也稱為有功功率,active power)
    • 以 P 來表示,其單位是瓦特(W)。
  • 視在功率(apparent power)
    • 以 S 來表示,其單位是伏安(VA),是電壓和電流有效值(rms) 的乘積。
    • 有效值(rms) 定義
      • 當一個交流電和另一個直流電分別在相同的條件下作等量的電功
        這個直流電的數值就稱為該交流電的有效值。
        像是通過同樣的電阻,所產生的能量
  • 虛功功率(reactive power)
    • 以 Q 來表示,其單位是無功伏安/瓦爾/乏(var)。
    • 另外三個不正確的寫法也被廣泛使用 VAr, VAR, Var

AC 需轉換為 Fourier Series φn=θVnθInP=Pdc+PacPac=n=1NVn,rmsIn,rmscosφn=12n=1NVnIncosφn=12n=1NRE[VnIn]
P=1T0TVIdt=1T0T(Vdc+vac)(Idc+iac)dt=1T0T(VdcIdc+vacIdc+Vdciac+vaciac)dt=1T(0TVdcIdcdt+0TvacIdcdt0+0TVdciacdt0+0Tvaciacdt)=1T(0TVdcIdcdt+0Tvaciacdt)=1T0TVdcIdcdt+1T0Tvaciacdt=VdcIdc+1T0Tvaciacdt=Pdc+Pac=Pdc+SPF THD=n=2NIn,rmsI1,rmsPF=11+THD2cosφ=I1,rmsIrmsDPF 利用 Fourier series (傅立葉級數) 展開
Pac=1T0Tvac(t)iac(t)dt=1T0Tn=1NVnsin(nwnt+αn)n=1NInsin(nwnt+βn)dt=1T(0Tn=1NnpNVpsin(pwpt+αp)Insin(nwnt+βn)dt+0Tn=1NVnsin(nwnt+αn)Insin(nwnt+βn)dt)=1T(n=1NpnN0TVpsin(pwpt+αp)Insin(nwnt+βn)dt0+n=1N0TVnInsin(nwnt+αn)sin(nwnt+βn)dt)=1Tn=1NVnIn0Tsin(nwnt+αn)sin(nwnt+βn)dt=1Tn=1NVnIn0T12[cos(nwnt+αn+nwnt+βn)cos(nwnt+αnnwntβn)]dt=1Tn=1NVnIn120Tcos(2nwnt+αn+βn)cos(αnβn)dt=1Tn=1NVnIn12(0Tcos(2nwnt+αn+βn)00Tcos(αnβn)dtTcos(αnβn))=12n=1NVnIncos(αnβn)=n=1NVn,rmsIn,rmscosφn=12n=1NVnIncosφn=12n=1NRE[VnIn]

若負載為 R ,那麼可直接求出 VrmsIrms 再代入功率公式,或是 vacrmsiac,rms 求解即可
P=Pdc+Pac=Vrms2R=Irms2RPac=vac,rms2R=iac,rms2R
P=1T0TV2Rdt=1T0T(Vdc+vac)2Rdt=1T0T(Vdc2+2Vdcvac+vac2)Rdt=1T0TVdc2Rdt+1T0T2VdcvacRdt0+1T0Tvac2Rdt=1T0TVdc2Rdt+1T0Tvac2Rdt=Pdc+Pac=Pdc+vac,rms2R P=1T0TI2Rdt=1T0T(Idc+iac)2Rdt=1T0T(Idc2+2Idciac+iac2)Rdt=1T0TIdc2Rdt+1T0T2IdciacRdt0+1T0Tiac2Rdt=1T0TIdc2Rdt+1T0Tiac2Rdt=Pdc+Pac=Pdc+iac,rms2R 利用 Fourier series (傅立葉級數) 展開
vac,rms2=1T0Tvac2(t)dt=1T0Tn=1NVnsin(nwnt+αn)n=1NVnsin(nwnt+αn)dt=1T(0Tn=1NnpNVnsin(nwnt+αn)Vpsin(pwpt+αp)dt+0Tn=1NVn2sin2(nwnt+αn)dt)=1T(n=1NpnN0TVnsin(nwnt+αn)Vpsin(pwpt+αp)dt0+n=1N0TVn2sin2(nwnt+αn)dt)=1Tn=1NVn20Tsin2(nwnt+αn)dt=1Tn=1NVn20T1cos(2nwnt+2αn)2dt=n=1NVn22=n=1NVn,rms2 電流也可以依此推導之

R 程式碼模擬

  1. rms <- function(data) {
  2. square = data*data
  3. mean = sum(square)/length(data)
  4. return (mean^(1/2))
  5. }
  6.  
  7. n = 1000
  8. theta = seq(0,2*pi,length=n)
  9.  
  10. #可依需求更改 I V R 的關係
  11. t = 1:n
  12. #v = array(10,n)
  13. v = 7*sin(10*theta+pi/3)+30
  14. i_1 = 10*sin(10*theta)
  15. i_2 = 10*sin(5*theta)
  16. i_3 = 10*sin(15*theta)
  17. i = i_1 + i_2 + i_3 +15
  18. r = v/i
  19.  
  20. par(mfrow=c(3,1))
  21. plot(t, v, 'l')
  22. plot(t, i, 'l')
  23. plot(t, r, 'l')
  24.  
  25. v_rms = rms(v)
  26. i_rms = rms(i)
  27. r_rms = rms(r)
  28.  
  29. v_m = mean(v)
  30. i_m = mean(i)
  31. r_m = mean(r)
  32.  
  33. p_dc = i_m*v_m
  34. cat(paste("p_dc = i_dc * v_dc = ", p_dc), "\n")
  35.  
  36. p_ac_avg = mean((i-i_m) * (v-v_m))
  37. cat(paste("p_ac_avg = i_ac * v_ac = ", p_ac_avg), "\n")
  38.  
  39. p_ac_rms = rms(i-i_m) * rms(v-v_m)
  40. cat(paste("p_ac_rms = i_ac_rms * v_ac_rms = ", p_ac_rms), "\n")
  41.  
  42. cat('\n')
  43.  
  44. cat(paste("p_ac_avg+p_dc = ", p_ac_avg+p_dc), "\n")
  45. cat(paste("p_ac_rms+p_dc = ", p_ac_rms+p_dc), "\n")
  46.  
  47. p_rms = i_rms*v_rms
  48. cat(paste("p_rms = i_rms * v_rms = ", p_rms), "\n")
  49.  
  50. cat('\n')
  51.  
  52. p_a = mean(i*v)
  53. cat(paste("p_avg = ", p_a), "\n")
  54.  
  55. cat('\n')
  56.  
  57. phase = acos(p_ac_avg/p_ac_rms)*180/pi
  58. cat(paste("phase = ", phase), "\n")
  59.  
  60. p_ac_r = p_ac_rms * cos(phase/180*pi)
  61. cat(paste("p_ac Real = ", p_ac_r), "\n")
  62.  
  63. p_ac_q = p_ac_rms * sin(phase/180*pi)
  64. cat(paste("p_ac Reactive = ", p_ac_q), "\n")

留言