電路知識:S-Parameters (Scattering parameters)
工具:Qucs
簡介:推導與原理
$$
\begin{bmatrix}
b_1\\
b_2
\end{bmatrix}
=
\begin{bmatrix}
S_{11} & S_{12}\\
S_{21} & S_{22}
\end{bmatrix}
\begin{bmatrix}
a_1\\
a_2
\end{bmatrix}
$$
$$
\begin{matrix}
a_1 = \frac{\mathbf{V_1+Z_0I_1}}{2\mathbf{\sqrt{Z_0}}} & a_2 = \frac{\mathbf{V_2+Z_0I_2}}{2\mathbf{\sqrt{Z_0}}}\\
b_1 = \frac{\mathbf{V_1-Z_0^*I_1}}{2\mathbf{\sqrt{Z_0}}} & b_2 = \frac{\mathbf{V_2-Z_0^*I_2}}{2\mathbf{\sqrt{Z_0}}}
\end{matrix}
$$
$$
\begin{matrix}
\left.\begin{matrix}
S_{11}=\frac{b_1}{a_1}
\end{matrix}\right|_{a_2=0} &
\left.\begin{matrix}
S_{12}=\frac{b_1}{a_2}
\end{matrix}\right|_{a_1=0}\\
\left.\begin{matrix}
S_{21}=\frac{b_2}{a_1}
\end{matrix}\right|_{a_2=0} &
\left.\begin{matrix}
S_{22}=\frac{b_2}{a_2}
\end{matrix}\right|_{a_1=0}
\end{matrix}\\
$$
\(\mathbf{Z_0}\) 為任意值,通常為 50Ω
$$
\begin{align*}
a_i &= \frac{\mathbf{V_i+Z_0I_i}}{2\mathbf{\sqrt{\mathrm{Re}[Z_0]}}} \\
b_i &= \frac{\mathbf{V_i-Z_0^*I_i}}{2\mathbf{\sqrt{\mathrm{Re}[Z_0]}}} \\
\\
|a_i|^2 & = a_ia_i^* \\
&= \frac{\mathbf{V_i+Z_0I_i}}{2\mathbf{\sqrt{\mathrm{Re}[Z_0]}}}\cdot \frac{\mathbf{V_i^*+Z_0^*I_i^*}}{2\mathbf{\sqrt{\mathrm{Re}[Z_0^*]}}} \\
&= \frac{\mathbf{V_iV_i^*+V_iZ_0^*I_i^*+V_i^*Z_0I_i+Z_0I_iZ_0^*I_i^*}}{4\mathrm{Re}[\mathbf{Z_0}]}\\
|b_i|^2 & = b_ib_i^* \\
&= \frac{\mathbf{V_i-Z_0^*I_i}}{2\mathbf{\sqrt{\mathrm{Re}[Z_0]}}}\cdot \frac{\mathbf{V_i^*-Z_0I_i^*}}{2\mathbf{\sqrt{\mathrm{Re}[Z_0^*]}}} \\
&= \frac{\mathbf{V_iV_i^*-V_iZ_0I_i^*-V_i^*Z_0^*I_i+Z_0^*I_iZ_0I_i^*}}{4\mathrm{Re}[\mathbf{Z_0}]}\\
|a_i|^2-|b_i|^2 &= \frac{\mathbf{V_iV_i^*+V_iZ_0^*I_i^*+V_i^*Z_0I_i+Z_0I_iZ_0^*I_i^*}}{4\mathrm{Re}[\mathbf{Z_0}]} - \frac{\mathbf{V_iV_i^*-V_iZ_0I_i^*-V_i^*Z_0^*I_i+Z_0^*I_iZ_0I_i^*}}{4\mathrm{Re}[\mathbf{Z_0}]}\\
&= \frac{\mathbf{V_iI_i^*Z_0^*+V_i^*I_iZ_0+V_iI_i^*Z_0+V_i^*I_iZ_0^*}}{4\mathrm{Re}[\mathbf{Z_0}]}\\
&= \frac{\mathbf{V_iI_i^*(Z_0+Z_0^*)+V_i^*I_i(Z_0+Z_0^*)}}{4\mathrm{Re}[\mathbf{Z_0}]}\\
&= \frac{2\mathbf{V_iI_i^*\mathrm{Re}[\mathbf{Z_0}]}+2\mathbf{V_i^*I_i\mathrm{Re}[\mathbf{Z_0}]}}{4\mathrm{Re}[\mathbf{Z_0}]}\\
&= \frac{\mathbf{V_iI_i^*}+\mathbf{V_i^*I_i}}{2}\\
&= \frac{2\mathrm{Re}[\mathbf{V_iI_i^*}]}{2}\\
&= \mathrm{Re}[\mathbf{V_iI_i^*}]\\
\end{align*}
$$
可看出 \(a_i\)、\(b_i\) 的單位其實是 \(\sqrt{power}\)
然而 \(|a_i|^2\) 就像是輸入功率,然而 \(|b_i|^2\) 就像是反射功率
兩者相減後,得到消耗功率
若 \(\mathbf{V_i}\) 和 \(\mathbf{I_i^*}\) 不是 rms 值,而是 max 值
此時需乘上 \(\frac{1}{2}\) 才是真正的功率
原因可參考此篇
[Circuit] AC Sinusoids 穩態分析
傳輸線傳遞的概念,也可以看作能量傳遞
\(S_{11}\):回波損耗 (return loss),值越接近 0 越好 (越低越好 ,一般 -25 ~ -40dB)
\(S_{12}\):反向傳輸增益,值越接近 0 越好
\(S_{21}\):插入損耗 (inset loss),或是頻率響應:值越接近 1 越好 (0dB)
\(S_{22}\):輸出端反射係數,值越接近 1 越好 (0dB)
Network Analyzer 原理
$$
\delta _i = \beta l_i\\
S=
\begin{bmatrix}
S_{11} & S_{12}\\
S_{21} & S_{22}
\end{bmatrix}
=
\left [\begin{array}{ll}
S{}'_{11}e^{2j\delta _1} & S{}'_{12}e^{j(\delta _1+\delta _2)}\\
S{}'_{21}e^{j(\delta _1+\delta _2)} & S{}'_{22}e^{2j\delta _2}
\end{array} \right ]
$$
令 \(\mathbf{Z_L}=\mathbf{Z_0}\) 則 \(a{}'_2=0\),可求 \(S{}'_{11}\) & \(S{}'_{21}\)
交換兩邊,可求 \(S{}'_{12}\) & \(S{}'_{22}\)
根據
[Circuit] Transmission line
$$
\begin{align*}
\mathbf{V}(z)&=\mathbf{V_f}e^{-\gamma z}+\mathbf{V_r}e^{\gamma z}\\
\mathbf{I}(z)&=\mathbf{I_f}e^{-\gamma z}-\mathbf{I_r}e^{\gamma z}\\
&= \mathbf{\frac{V_f}{Z_0}}e^{-\gamma z}-\mathbf{\frac{V_r}{Z_0}}e^{\gamma z}\\
\mathbf{Z_0I}(z) &= \mathbf{V_f}e^{-\gamma z}-\mathbf{V_r}e^{\gamma z}\\
\mathbf{V_f} &= \frac{\mathbf{V}(z)+\mathbf{Z_0I}(z)}{2}e^{\gamma z}\\
\mathbf{V_r} &= \frac{\mathbf{V}(z)-\mathbf{Z_0I}(z)}{2}e^{-\gamma z}
\end{align*}
$$
當 \(z=0\)
$$
\begin{matrix}
a_1 = \frac{\mathbf{V_1+Z_0I_1}}{2\mathbf{\sqrt{Z_0}}}=\frac{\mathbf{V_{1f}}}{\mathbf{\sqrt{Z_0}}} & a_2 = \frac{\mathbf{V_2+Z_0I_2}}{2\mathbf{\sqrt{Z_0}}}=\frac{\mathbf{V_{2f}}}{\mathbf{\sqrt{Z_0}}}\\
b_1 = \frac{\mathbf{V_1-Z_0^*I_1}}{2\mathbf{\sqrt{Z_0}}}=\frac{\mathbf{V_{1r}}}{\mathbf{\sqrt{Z_0}}} & b_2 = \frac{\mathbf{V_2-Z_0^*I_2}}{2\mathbf{\sqrt{Z_0}}} =\frac{\mathbf{V_{2r}}}{\mathbf{\sqrt{Z_0}}}
\end{matrix}
$$
假設為無損耗傳輸線
$$
\begin{align*}
\gamma &= j\beta\\
\\
\begin{bmatrix}
a{}'_1\\
b{}'_1\\
\end{bmatrix}
&=
\begin{bmatrix}
\frac{\mathbf{V{}'_1+Z_0I{}'_1}}{2\mathbf{\sqrt{Z_0}}}\\
\frac{\mathbf{V{}'_1+Z_0I{}'_1}}{2\mathbf{\sqrt{Z_0}}}\\
\end{bmatrix}\\
&=
\begin{bmatrix}
\frac{\mathbf{V{}'_1+Z_0I{}'_1}}{2\mathbf{\sqrt{Z_0}}}e^{\gamma (-l_1)}e^{-\gamma (-l_1)}\\
\frac{\mathbf{V{}'_1+Z_0I{}'_1}}{2\mathbf{\sqrt{Z_0}}}e^{-\gamma (-l_1)}e^{\gamma (-l_1)}\\
\end{bmatrix}\\
&=
\begin{bmatrix}
\frac{\mathbf{V_{1f}}}{\mathbf{\sqrt{Z_0}}}e^{-\gamma (-l_1)}\\
\frac{\mathbf{V_{1r}}}{\mathbf{\sqrt{Z_0}}}e^{\gamma (-l_1)}\\
\end{bmatrix}\\
&=
\begin{bmatrix}
a_1e^{j\beta l_1}\\
b_1e^{-j\beta l_1}\\
\end{bmatrix}\\
&=
\begin{bmatrix}
e^{j\beta l_1} & 0\\
0 & e^{-j\beta l_1}
\end{bmatrix}
\begin{bmatrix}
a_1\\
b_1\\
\end{bmatrix}\\
\begin{bmatrix}
a{}'_2\\
b{}'_2\\
\end{bmatrix}
&=
\begin{bmatrix}
\frac{\mathbf{V{}'_2+Z_0I{}'_2}}{2\mathbf{\sqrt{Z_0}}}\\
\frac{\mathbf{V{}'_2+Z_0I{}'_2}}{2\mathbf{\sqrt{Z_0}}}\\
\end{bmatrix}\\
&=
\begin{bmatrix}
\frac{\mathbf{V{}'_2+Z_0I{}'_2}}{2\mathbf{\sqrt{Z_0}}}e^{\gamma (-l_2)}e^{-\gamma (-l_2)}\\
\frac{\mathbf{V{}'_2+Z_0I{}'_2}}{2\mathbf{\sqrt{Z_0}}}e^{-\gamma (-l_2)}e^{\gamma (-l_2)}\\
\end{bmatrix}\\
&=
\begin{bmatrix}
\frac{\mathbf{V_{2f}}}{\mathbf{\sqrt{Z_0}}}e^{-\gamma (-l_2)}\\
\frac{\mathbf{V_{2r}}}{\mathbf{\sqrt{Z_0}}}e^{\gamma (-l_2)}\\
\end{bmatrix}\\
&=
\begin{bmatrix}
a_2e^{j\beta l_2}\\
b_2e^{-j\beta l_2}\\
\end{bmatrix}\\
&=
\begin{bmatrix}
e^{j\beta l_2} & 0\\
0 & e^{-j\beta l_2}
\end{bmatrix}
\begin{bmatrix}
a_2\\
b_2\\
\end{bmatrix}\\
\begin{bmatrix}
b_1\\
b_2
\end{bmatrix}
&=
D
\begin{bmatrix}
b{}'_1\\
b{}'_2
\end{bmatrix}
\\
\begin{bmatrix}
a{}'_1\\
a{}'_2
\end{bmatrix}
&=
D
\begin{bmatrix}
a_1\\
a_2
\end{bmatrix}\\
D&=\begin{bmatrix}
e^{j\beta l_1} & 0\\
0 & e^{j\beta l_2}
\end{bmatrix}\\
&=\begin{bmatrix}
e^{j\delta _1} & 0\\
0 & e^{j\delta _2}
\end{bmatrix}
\end{align*}
$$
$$
\begin{align*}
\begin{bmatrix}
b{}'_1\\
b{}'_2
\end{bmatrix}
&=
\begin{bmatrix}
S{}'_{11} & S{}'_{12}\\
S{}'_{21} & S{}'_{22}
\end{bmatrix}
\begin{bmatrix}
a{}'_1\\
a{}'_2
\end{bmatrix}\\
\begin{bmatrix}
b_1\\
b_2
\end{bmatrix}
&=
D
\begin{bmatrix}
b{}'_1\\
b{}'_2
\end{bmatrix}
\\
&=D
\begin{bmatrix}
S{}'_{11} & S{}'_{12}\\
S{}'_{21} & S{}'_{22}
\end{bmatrix}
\begin{bmatrix}
a{}'_1\\
a{}'_2
\end{bmatrix}
\\
&=D
\begin{bmatrix}
S{}'_{11} & S{}'_{12}\\
S{}'_{21} & S{}'_{22}
\end{bmatrix}
D
\begin{bmatrix}
a_1\\
a_2
\end{bmatrix}\\
&=DS{}'D
\begin{bmatrix}
a_1\\
a_2
\end{bmatrix}\\
&=S
\begin{bmatrix}
a_1\\
a_2
\end{bmatrix}\\
\end{align*}
$$
$$
\begin{align*}
S&=DS{}'D\\
&=
\begin{bmatrix}
e^{j\delta _1} & 0\\
0 & e^{j\delta _2}
\end{bmatrix}
\begin{bmatrix}
S{}'_{11} & S{}'_{12}\\
S{}'_{21} & S{}'_{22}
\end{bmatrix}
\begin{bmatrix}
e^{j\delta _1} & 0\\
0 & e^{j\delta _2}
\end{bmatrix}\\
&=
\begin{bmatrix}
e^{j\delta _1}S{}'_{11} & e^{j\delta _1}S{}'_{12}\\
e^{j\delta _2}S{}'_{21} & e^{j\delta _2}S{}'_{22}
\end{bmatrix}
\begin{bmatrix}
e^{j\delta _1} & 0\\
0 & e^{j\delta _2}
\end{bmatrix}\\
&=\left [\begin{array}{ll}
S{}'_{11}e^{2j\delta _1} & S{}'_{12}e^{j(\delta _1+\delta _2)}\\
S{}'_{21}e^{j(\delta _1+\delta _2)} & S{}'_{22}e^{2j\delta _2}
\end{array} \right ]
\end{align*}
$$
參數轉換
$$
S=(\mathbf{Z}-\mathbf{Z_0}I)(\mathbf{Z}+\mathbf{Z_0}I)^{-1}
$$
$$
\begin{align*}
\mathbf{V}&=\begin{bmatrix}\mathbf{V_1}\\ \mathbf{V_2}\end{bmatrix}\:
\mathbf{I}=\begin{bmatrix}\mathbf{I_1}\\ \mathbf{I_2}\end{bmatrix}\\
\mathbf{a}&=\begin{bmatrix}a_1\\ a_2\end{bmatrix}\:
\mathbf{b}=\begin{bmatrix}b_1\\ b_2\end{bmatrix}\\
\mathbf{V} &= \mathbf{Z}\mathbf{I}\\
\mathbf{a}&=\frac{1}{2\sqrt{\mathbf{Z_0}}}(\mathbf{V}+\mathbf{Z_0I})
=\frac{1}{2\sqrt{\mathbf{Z_0}}}(\mathbf{Z}+\mathbf{Z_0}I)\mathbf{I}\\
\mathbf{b}&=\frac{1}{2\sqrt{\mathbf{Z_0}}}(\mathbf{V}-\mathbf{Z_0I})
=\frac{1}{2\sqrt{\mathbf{Z_0}}}(\mathbf{Z}-\mathbf{Z_0}I)\mathbf{I}\\
\frac{1}{2\sqrt{\mathbf{Z_0}}}\mathbf{I}&=(\mathbf{Z}+\mathbf{Z_0}I)^{-1}\mathbf{a}\\
\mathbf{b}&=\frac{1}{2\sqrt{\mathbf{Z_0}}}(\mathbf{Z}-\mathbf{Z_0}I)\mathbf{I}\\
&=(\mathbf{Z}-\mathbf{Z_0}I)(\mathbf{Z}+\mathbf{Z_0}I)^{-1}\mathbf{a}\\
&= S\mathbf{a}
\end{align*}
$$
即然可以從 \(\mathbf{Z}\) 轉換為 \(S\),那麼 \(S\) 運用反矩陣也可以轉為 \(\mathbf{Z}\)
所以其他的參數也就可以轉換,可利用此篇的轉換表
[Circuit] Two-Port Networks 分析
範例
Qucs 自動
若 \(Z0\neq 50\Omega \),stoz(S, Zref=50) 需更改 Zref 參數,預設為 50Ω
算式推導
$$
\begin{align*}
S&=\begin{bmatrix}
\mathbf{z_{11}}-\mathbf{Z_0} & \mathbf{z_{12}}\\
\mathbf{z_{21}} & \mathbf{z_{22}}-\mathbf{Z_0}
\end{bmatrix}
\begin{bmatrix}
\mathbf{z_{11}}+\mathbf{Z_0} & \mathbf{z_{12}}\\
\mathbf{z_{21}} & \mathbf{z_{22}}+\mathbf{Z_0}
\end{bmatrix}^{-1}\\
&=\begin{bmatrix}
50 & 50\\
50 & 50
\end{bmatrix}
\begin{bmatrix}
150 & 50\\
50 & 150
\end{bmatrix}^{-1}\\
&=\begin{bmatrix}
50 & 50\\
50 & 50
\end{bmatrix}
\begin{bmatrix}
\frac{3}{400} & \frac{-1}{400}\\
\frac{-1}{400} & \frac{3}{400}
\end{bmatrix}\\
&=\begin{bmatrix}
0.25 & 0.25\\
0.25 & 0.25
\end{bmatrix}
\end{align*}
$$
Qucs 手動
根據 Network Analyzer 原理,因 \(l_1=0\) 跟 \(l_2=0\),故 \(S{}'=S\)
將 V2 Short,並將 RL_R 設為跟 Z0 一致,此時 a2 才會為 0,也才能求 S11 & S21
且此時
RL_L 的值無任何影響,沒有一定需為 Z0
將 V1 Short,並將 RL_L 設為跟 Z0 一致,此時 a1 才會為 0,也才能求 S12 & S22
且此時
RL_R 的值無任何影響,沒有一定需為 Z0
算式推導
$$
\begin{align*}
S&=\begin{bmatrix}
\mathbf{z_{11}}-\mathbf{Z_0} & \mathbf{z_{12}}\\
\mathbf{z_{21}} & \mathbf{z_{22}}-\mathbf{Z_0}
\end{bmatrix}
\begin{bmatrix}
\mathbf{z_{11}}+\mathbf{Z_0} & \mathbf{z_{12}}\\
\mathbf{z_{21}} & \mathbf{z_{22}}+\mathbf{Z_0}
\end{bmatrix}^{-1}\\
&=\begin{bmatrix}
25 & 50\\
50 & 25
\end{bmatrix}
\begin{bmatrix}
175 & 50\\
50 & 175
\end{bmatrix}^{-1}\\
&=\begin{bmatrix}
25 & 50\\
50 & 25
\end{bmatrix}
\begin{bmatrix}
\frac{7}{1125} & \frac{-2}{1125}\\
\frac{-2}{1125} & \frac{7}{1125}
\end{bmatrix}\\
&=\begin{bmatrix}
0.0667 & 0.267\\
0.267 & 0.0667
\end{bmatrix}
\end{align*}
$$
參考
Scattering parameters
S-Parameters
Reflection and Transmission
Transmission Lines
Multilayer Structures
RF Engineering Basic Concepts: S-Parameters
S-parameter -- 基礎篇
留言
張貼留言