電路知識:Transmission line
工具:Qucs
線上模擬
簡介:Transmission line 的推導
特別情況
模擬結果
簡單範例
之前推導的皆是穩態 (因有轉換為 Phasor domain,穩態原因)
並聯範例
特別情況
波長 \(\lambda \gg\) 線長 \(l\)
傳輸線模型
Transmission Line vs Lumped Element
工具:Qucs
線上模擬
簡介:Transmission line 的推導
\(\alpha\):衰減常數 (attenuation constant) , napper/m
\(\beta\):相位常數 (phase constant) , rad/m
$$ \begin{align*} \mathbf{V}(z)&=\mathbf{V_f}e^{-\gamma z}+\mathbf{V_r}e^{\gamma z}\\ \mathbf{I}(z)&=\mathbf{I_f}e^{-\gamma z}-\mathbf{I_r}e^{\gamma z}\\ \gamma = \alpha +j\beta &= \sqrt{(R+jwL)(G+jwC)} \\ v_{phase}&=\frac{z_2-z_1}{t_2-t_1}=\frac{w}{\beta }=c=f\cdot \lambda \\ \lambda &= \frac{2\pi}{\beta }\\ \mathbf{Z_0}=\frac{\mathbf{V_f}}{\mathbf{I_f}}=\frac{\mathbf{V_r}}{\mathbf{I_r}}&=\frac{R+jwL}{\gamma }=\sqrt{\frac{R+jwL}{G+jwC}} \end{align*} $$
\(\beta\):相位常數 (phase constant) , rad/m
$$ \begin{align*} \mathbf{V}(z)&=\mathbf{V_f}e^{-\gamma z}+\mathbf{V_r}e^{\gamma z}\\ \mathbf{I}(z)&=\mathbf{I_f}e^{-\gamma z}-\mathbf{I_r}e^{\gamma z}\\ \gamma = \alpha +j\beta &= \sqrt{(R+jwL)(G+jwC)} \\ v_{phase}&=\frac{z_2-z_1}{t_2-t_1}=\frac{w}{\beta }=c=f\cdot \lambda \\ \lambda &= \frac{2\pi}{\beta }\\ \mathbf{Z_0}=\frac{\mathbf{V_f}}{\mathbf{I_f}}=\frac{\mathbf{V_r}}{\mathbf{I_r}}&=\frac{R+jwL}{\gamma }=\sqrt{\frac{R+jwL}{G+jwC}} \end{align*} $$
特別情況
無損耗傳輸線
$$ \begin{align*} \gamma = \alpha +j\beta &= jwLC \Rightarrow \left\{\begin{matrix} \alpha &=& 0 \\ \beta &=& w\sqrt{LC} \end{matrix}\right.\\ v_{phase}&=\frac{1}{\sqrt{LC}}\\ \lambda &= \frac{2\pi}{w\sqrt{LC}}\\ \mathbf{Z_0}&=\sqrt{\frac{L}{C}}\\ \end{align*} $$
$$ \begin{align*} \gamma = \alpha +j\beta &= jwLC \Rightarrow \left\{\begin{matrix} \alpha &=& 0 \\ \beta &=& w\sqrt{LC} \end{matrix}\right.\\ v_{phase}&=\frac{1}{\sqrt{LC}}\\ \lambda &= \frac{2\pi}{w\sqrt{LC}}\\ \mathbf{Z_0}&=\sqrt{\frac{L}{C}}\\ \end{align*} $$
有終端負載的傳輸線
反射係數 \(\Gamma\)
$$ \begin{align*} \Gamma (z=0)&=\frac{\mathbf{Z_L-Z_0}}{\mathbf{Z_L+Z_0}}\\ \Gamma(z)&=\frac{\mathbf{V_r}}{\mathbf{V_f}}e^{2\gamma z}=\Gamma (z=0)e^{2\gamma z}\\ \\ \mathbf{Z_{in}}(z)&= \frac{\mathbf{Z_L}(e^{-\gamma z}+e^{\gamma z})+\mathbf{Z_0}(e^{-\gamma z}-e^{\gamma z})}{\mathbf{Z_L}(e^{-\gamma z}-e^{\gamma z})+\mathbf{Z_0}(e^{-\gamma z}+e^{\gamma z})}\mathbf{Z_0}=\frac{\mathbf{Z_L}cosh(\gamma z)-\mathbf{Z_0}sinh(\gamma z)}{-\mathbf{Z_L}sinh(\gamma z)+\mathbf{Z_0}cosh(\gamma z)}\mathbf{Z_0}\\ \end{align*} $$
$$ \begin{align*} \Gamma (z=0)&=\frac{\mathbf{Z_L-Z_0}}{\mathbf{Z_L+Z_0}}\\ \Gamma(z)&=\frac{\mathbf{V_r}}{\mathbf{V_f}}e^{2\gamma z}=\Gamma (z=0)e^{2\gamma z}\\ \\ \mathbf{Z_{in}}(z)&= \frac{\mathbf{Z_L}(e^{-\gamma z}+e^{\gamma z})+\mathbf{Z_0}(e^{-\gamma z}-e^{\gamma z})}{\mathbf{Z_L}(e^{-\gamma z}-e^{\gamma z})+\mathbf{Z_0}(e^{-\gamma z}+e^{\gamma z})}\mathbf{Z_0}=\frac{\mathbf{Z_L}cosh(\gamma z)-\mathbf{Z_0}sinh(\gamma z)}{-\mathbf{Z_L}sinh(\gamma z)+\mathbf{Z_0}cosh(\gamma z)}\mathbf{Z_0}\\ \end{align*} $$
若傳輸線長度為 \(l\) or \(\infty\)
$$ \begin{align*} \Gamma (z=-l)&=\Gamma (z=0)e^{-2\gamma l}\\ \Gamma (z=-\infty )&=0\\ \\ \mathbf{Z_{in}}(z=0)&=\frac{2\mathbf{Z_{L}}}{2\mathbf{Z_{0}}}\mathbf{Z_0}=\mathbf{Z_L}\\ \mathbf{Z_{in}}(z=-l)&=\frac{\mathbf{Z_L}(e^{\gamma l}+e^{-\gamma l})+\mathbf{Z_0}(e^{\gamma l}-e^{-\gamma l})}{\mathbf{Z_L}(e^{\gamma l}-e^{-\gamma l})+\mathbf{Z_0}(e^{\gamma l}+e^{-\gamma l})}\mathbf{Z_0}\\ \mathbf{Z_{in}}(z=-\infty )&=\frac{\mathbf{Z_L}+\mathbf{Z_0}}{\mathbf{Z_L}+\mathbf{Z_0}}\mathbf{Z_0}=\mathbf{Z_0}\\ \end{align*} $$
$$ \begin{align*} \Gamma (z=-l)&=\Gamma (z=0)e^{-2\gamma l}\\ \Gamma (z=-\infty )&=0\\ \\ \mathbf{Z_{in}}(z=0)&=\frac{2\mathbf{Z_{L}}}{2\mathbf{Z_{0}}}\mathbf{Z_0}=\mathbf{Z_L}\\ \mathbf{Z_{in}}(z=-l)&=\frac{\mathbf{Z_L}(e^{\gamma l}+e^{-\gamma l})+\mathbf{Z_0}(e^{\gamma l}-e^{-\gamma l})}{\mathbf{Z_L}(e^{\gamma l}-e^{-\gamma l})+\mathbf{Z_0}(e^{\gamma l}+e^{-\gamma l})}\mathbf{Z_0}\\ \mathbf{Z_{in}}(z=-\infty )&=\frac{\mathbf{Z_L}+\mathbf{Z_0}}{\mathbf{Z_L}+\mathbf{Z_0}}\mathbf{Z_0}=\mathbf{Z_0}\\ \end{align*} $$
模擬結果
簡單範例
之前推導的皆是穩態 (因有轉換為 Phasor domain,穩態原因)
- 以暫態來看,Power 一開始送出,不會知道導線多長,所以會認為導線無限長
此時 \(\mathbf{Z_{in}}(z=-\infty )=\mathbf{Z_0}\),電壓會是分壓下的結果 \(1 \times \frac{150}{200}=0.75V\) - 訊號到達負載端,因 \(\mathbf{V}(0)=\mathbf{V_f}+\mathbf{V_r}=\mathbf{V_f}+\Gamma (z=0)\mathbf{V_f}\)
故負載電壓為 \(0.75+0.75 \times \frac{50-150}{200}=0.375V\),反射電壓為 \(0.75 \times \frac{50-150}{200}=-3.75V\) - 訊號又回到起點,因可看作從負載端送來 \(\mathbf{V_f}\),仍可使用 \(\mathbf{V}(0)=\mathbf{V_f}+\mathbf{V_r}=\mathbf{V_f}+\Gamma (z=0)\mathbf{V_f}\)
故起點為 \(-3.75+(-3.75) \times \frac{50-150}{200}=-0.1875V\),反射電壓為 \(-3.75 \times \frac{50-150}{200}=0.1875V\)
並聯範例
- 以暫態來看,Power 一開始送出,不會知道導線多長,又無電阻,所以全力送出 \(1V\)
- 到達 \(\mathrm{vin2}\) 時,因後兩端導線長度未知,所以會認為導線無限長
此時因 \(\mathbf{Z_{in}}(z=-\infty )=\mathbf{Z_0}\),\(\mathbf{Z_{in}} = 50+50//50=75 \Omega\)
故 \(\mathrm{vin2}=\mathbf{V_f}+\mathbf{V_r}=\mathbf{V_f}+\Gamma (z=0)\mathbf{V_f}=1.2V\)
反射電壓為 \(\Gamma (z=0)\mathbf{V_f}=\frac{75-50}{75+50} \times 1 = 0.2V\)
因電阻分壓 \(\mathrm{vmid}=1.2 \times \frac{50//50}{\mathbf{Z_{in}}}=0.4V\) - 到達 \(\mathrm{vout1}\) & \(\mathrm{vout2}\) 時,因阻抗匹配,故完全接受為 \(0.4V\)
特別情況
波長 \(\lambda \gg\) 線長 \(l\)
$$
\begin{align*}
\gamma &= \alpha +j\beta = \alpha +j\frac{2\pi}{\lambda}\\
\mathbf{Z_0}&=\frac{R+jwL}{\gamma }=\frac{R+jwL}{\alpha +j\frac{2\pi}{\lambda} }\\
\mathbf{Z_{in}}(z)&=\frac{\mathbf{Z_L}(e^{-\gamma z}+e^{\gamma z})+\mathbf{Z_0}(e^{-\gamma z}-e^{\gamma z})}{\mathbf{Z_L}(e^{-\gamma z}-e^{\gamma z})+\mathbf{Z_0}(e^{-\gamma z}+e^{\gamma z})}\mathbf{Z_0}\\
&=\frac{\mathbf{Z_L}(e^{-(\alpha +j\frac{2\pi}{\lambda}) z}+e^{(\alpha +j\frac{2\pi}{\lambda}) z})+\mathbf{Z_0}(e^{-(\alpha +j\frac{2\pi}{\lambda}) z}-e^{(\alpha +j\frac{2\pi}{\lambda}) z})}{\mathbf{Z_L}(e^{-(\alpha +j\frac{2\pi}{\lambda}) z}-e^{(\alpha +j\frac{2\pi}{\lambda}) z})+\mathbf{Z_0}(e^{-(\alpha +j\frac{2\pi}{\lambda}) z}+e^{(\alpha +j\frac{2\pi}{\lambda}) z})}\mathbf{Z_0}\\
&\because \lambda \gg z\\
&=\frac{\mathbf{Z_L}(e^{-\alpha z}+e^{\alpha z})+\mathbf{Z_0}(e^{-\alpha z}-e^{\alpha z})}{\mathbf{Z_L}(e^{-\alpha z}-e^{\alpha z})+\mathbf{Z_0}(e^{-\alpha z}+e^{\alpha z})}\mathbf{Z_0}\\
\\
\mathbf{V}(z)&=\mathbf{V_f}e^{-\gamma z}+\mathbf{V_r}e^{\gamma z}\\
&=\mathbf{V_f}e^{-(\alpha +j\frac{2\pi}{\lambda}) z}+\mathbf{V_r}e^{(\alpha +j\frac{2\pi}{\lambda}) z}\\
&\because \lambda \gg z\\
&=\mathbf{V_f}e^{-\alpha z}+\mathbf{V_r}e^{\alpha z}\\
\\
\Gamma(z)&=\Gamma (z=0)e^{2\gamma z}\\
&=\Gamma (z=0)e^{2(\alpha +j\frac{2\pi}{\lambda}) z}\\
&\because \lambda \gg z\\
&=\Gamma (z=0)e^{2\alpha z}\\
\end{align*}
$$
若為無損耗傳輸線 \(\alpha =0\)
$$ \begin{align*} \mathbf{Z_{in}}(z)&=\frac{2\mathbf{Z_L}}{2\mathbf{Z_0}}\mathbf{Z_0}=\mathbf{Z_L}\\ \Gamma(z)&=\Gamma (z=0)\\ \mathbf{V}(z)&=\mathbf{V_f}+\mathbf{V_r}=\mathbf{V_f}(1+\Gamma (z=0))\\ \end{align*} $$ 即然在源端看到的負載 \(\mathbf{Z_{in}}(-l)=\mathbf{Z_L}\) 跟負載端一致,所以分壓會是正確的
而 \(\mathbf{V}(z)\) 與 \(z\) 無關,所以整條線上都是同樣的電壓,也就是正確的分壓
常見的經驗方法認為如果電纜或者電線的長度大於波長的1/10,則需被作為傳輸線處理
$$ \begin{align*} \mathbf{Z_{in}}(z)&=\frac{2\mathbf{Z_L}}{2\mathbf{Z_0}}\mathbf{Z_0}=\mathbf{Z_L}\\ \Gamma(z)&=\Gamma (z=0)\\ \mathbf{V}(z)&=\mathbf{V_f}+\mathbf{V_r}=\mathbf{V_f}(1+\Gamma (z=0))\\ \end{align*} $$ 即然在源端看到的負載 \(\mathbf{Z_{in}}(-l)=\mathbf{Z_L}\) 跟負載端一致,所以分壓會是正確的
而 \(\mathbf{V}(z)\) 與 \(z\) 無關,所以整條線上都是同樣的電壓,也就是正確的分壓
參考
傳輸線理論與阻抗匹配傳輸線模型
Transmission Line vs Lumped Element
留言
張貼留言