[Circuit] Modulation

電路知識:Modulation
工具:Qucs

簡介:發射端將低頻訊號處理成高頻訊號以後,再傳送出去

主要的調變方法

  • 振幅調變(amplitude modulation,AM)
  • 頻率調變(Frequency modulation,FM)
  • 相位調變(Phase Modulation,PM)

AM (振幅調變)

c(t)=Accos(2πfct+ϕc)m(t)=Mcos(2πfmt+ϕ)AM(t)=[1+m(t)]c(t)=Accos(2πfct+ϕc)+AcM2[cos(2π(fcfm)t+ϕcϕ)+cos(2π(fc+fm)t+ϕc+ϕ)]M<1
AM(t)=[1+m(t)]c(t)=[1+Mcos(2πfmt+ϕ)]Accos(2πfct+ϕc)=Accos(2πfct+ϕc)+Mcos(2πfmt+ϕ)Accos(2πfct+ϕc)=Accos(2πfct+ϕc)+AcMcos(2πfct+ϕc)cos(2πfmt+ϕ)=Accos(2πfct+ϕc)+AcM2[cos(2πfct+ϕc(2πfmt+ϕ))+cos(2πfct+ϕc+(2πfmt+ϕ))]=Accos(2πfct+ϕc)+AcM2[cos(2π(fcfm)t+ϕcϕ)+cos(2π(fc+fm)t+ϕc+ϕ)] 必要條件:1+m(t)>1,故 M<1,否則會 overmodulation,訊號就不對了,因會使得輸出振幅為負的
頻寬 BW=2fm

電路驗證

角調變 定義

c(t)=Accos(2πfct+ϕc)XM(t)=Accos(2πfct+ϕc+ϕm(t))θ(t)=2πfct+ϕc+ϕm(t)f(t)=fc+12πdϕm(t)dt 相位偏差:ϕm(t)
頻率偏差 Δf12πdϕm(t)dt
dθ(t)dt=w(t)=2πf(t)=2πfc+dϕm(t)dtf(t)=fc+12πdϕm(t)dt

FM (頻率調變)

c(t)=Accos(2πfct+ϕc)m(t)=Mcos(2πfmt+ϕ)ϕm(t)=kf0tm(τ)dτFM(t)=Accos(2πfct+ϕc+ϕm(t))=Ack=Jk(β)cos(2π(fc+kfm)t+ϕc+kϕ)β=kfM2πfmΔf=βfm kf 為自定頻率偏差函數,單位為 Hz/Volt
根據角調變
dϕm(t)dt=kfm(t)ϕm(t)=kf0tm(τ)dτFM(t)=Accos(2πfct+ϕc+ϕm(t))=Accos(2πfct+ϕc+kf0tm(τ)dτ)=Accos(2πfct+ϕc+kf0tMcos(2πfmτ+ϕ))=Accos(2πfct+ϕc+kf12πfm(Msin(2πfmt+ϕ)))=Accos(2πfct+ϕc+kfM2πfmsin(2πfmt+ϕ))=Accos(2πfct+ϕc+βsin(2πfmt+ϕ))=Ac[cos(2πfct+ϕc)cos(βsin(2πfmt+ϕ))sin(2πfct+ϕc)sin(βsin(2πfmt+ϕ))] 用上面倒數第二式求 Δf
dθdt=d(2πfct+ϕc+βsin(2πfmt+ϕ))dt=2πfc+2πfmβcos(2πfmt+ϕ)=w(t)=2πf(t)f(t)=fc+βfmcos(2πfmt+ϕ)=fc+Δfcos(2πfmt+ϕ) 借由 bessel function
cos(zsinθ)=J0(z)+2k=1J2k(z)cos(2kθ)sin(zsinθ)=2k=0J2k+1(z)sin((2k+1)θ)Jn(z)=(1)nJn(z) 可得
cos(2πfct+ϕc)cos(βsin(2πfmt+ϕ))=cos(2πfct+ϕc)[J0(β)+2k=1J2k(β)cos(2k(2πfmt+ϕ))]=J0(β)cos(2πfct+ϕc)+2k=1J2k(β)cos(2πfct+ϕc)cos(2k(2πfmt+ϕ))=J0(β)cos(2πfct+ϕc)+k=1J2k(β)[cos(2π(fc+2kfm)t+ϕc+2kϕ)+cos(2π(fc2kfm)t+ϕc2kϕ)]=J0(β)cos(2πfct+ϕc)+k=1J2k(β)cos(2π(fc+2kfm)t+ϕc+2kϕ)+k=1J2k(β)cos(2π(fc2kfm)t+ϕc2kϕ)=J0(β)cos(2πfct+ϕc)+k=1J2k(β)cos(2π(fc+2kfm)t+ϕc+2kϕ)+k=1(1)2kJ2k(β)cos(2π(fc+2kfm)t+ϕc+2kϕ)=k=J2k(β)cos(2π(fc+2kfm)t+ϕc+2kϕ)sin(2πfct+ϕc)sin(βsin(2πfmt+ϕ))=sin(2πfct+ϕc)[2k=0J2k+1(β)sin((2k+1)(2πfmt+ϕ))]=2k=0J2k+1(β)sin(2πfct+ϕc)sin((2k+1)(2πfmt+ϕ))=k=0J2k+1(β)[cos(2π(fc(2k+1)fm)t+ϕc(2k+1)ϕ)cos(2π(fc+(2k+1)fm)t+ϕc+(2k+1)ϕ)]=k=0J2k+1(β)cos(2π(fc(2k+1)fm)t+ϕc(2k+1)ϕ)k=0J2k+1(β)(cos(2π(fc+(2k+1)fm)t+ϕc+(2k+1)ϕ)]=k=1(1)2k+1J2k+1(β)cos(2π(fc+(2k+1)fm)t+ϕc+(2k+1)ϕ)k=0J2k+1(β)(cos(2π(fc+(2k+1)fm)t+ϕc+(2k+1)ϕ)]=k=J2k+1(β)(cos(2π(fc+(2k+1)fm)t+ϕc+(2k+1)ϕ) 故可得 FM(t)=Ac[cos(2πfct+ϕc)cos(βsin(2πfmt+ϕ))sin(2πfct+ϕc)sin(βsin(2πfmt+ϕ))]=Ac[k=J2k(β)cos(2π(fc+2kfm)t+ϕc+2kϕ)+k=J2k+1(β)(cos(2π(fc+(2k+1)fm)t+ϕc+(2k+1)ϕ)]=Ac[k=evenJk(β)cos(2π(fc+kfm)t+ϕc+kϕ)+k=oddJk(β)(cos(2π(fc+kfm)t+ϕc+kϕ)]=Ack=Jk(β)cos(2π(fc+kfm)t+ϕc+kϕ)
β0.2k2Jk(β)0,則頻寬 BW2fm

電路驗證

PM (相位調變)

c(t)=Accos(2πfct+ϕc)m(t)=Mcos(2πfmt+ϕ)PM(t)=Accos(2πfct+ϕc+m(t))=Ack=Jk(M)cos(2π(fckfm)t+ϕckϕ+k2π)Δf=Mfm
PM(t)=Accos(2πfct+ϕc+m(t))=Accos(2πfct+ϕc+Mcos(2πfmt+ϕ))=Ac[cos(2πfct+ϕc)cos(Mcos(2πfmt+ϕ))sin(2πfct+ϕc)sin(Mcos(2πfmt+ϕ))] 用上面倒數第二式求 Δf
dθdt=d(2πfct+ϕc+Mcos(2πfmt+ϕ))dt=2πfc2πfmMsin(2πfmt+ϕ)=w(t)=2πf(t)f(t)=fcMfmsin(2πfmt+ϕ)=fc+Δfsin(2πfmt+ϕ) 借由 bessel function
cos(zsinθ)=J0(z)+2k=1J2k(z)cos(2kθ)sin(zsinθ)=2k=0J2k+1(z)sin((2k+1)θ)Jn(z)=(1)nJn(z) 可得
cos(2πfct+ϕc)cos(Mcos(2πfmt+ϕ))=cos(2πfct+ϕc)cos(Msin(π22πfmtϕ))=cos(2πfct+ϕc)[J0(M)+2k=1J2k(M)cos(2k(π22πfmtϕ))]=J0(M)cos(2πfct+ϕc)+2k=1J2k(M)cos(2πfct+ϕc)cos(2k(π22πfmtϕ))=J0(M)cos(2πfct+ϕc)+k=1J2k(M)[cos(2π(fc2kfm)t+ϕc2kϕ+kπ)+cos(2π(fc+2kfm)t+ϕc+2kϕkπ)]=J0(M)cos(2πfct+ϕc)+k=1J2k(M)cos(2π(fc2kfm)t+ϕc2kϕ+kπ)+k=1J2k(M)cos(2π(fc+2kfm)t+ϕc+2kϕkπ)=J0(M)cos(2πfct+ϕc)+k=1J2k(M)cos(2π(fc2kfm)t+ϕc2kϕ+kπ)+k=1(1)2kJ2k(M)cos(2π(fc2kfm)t+ϕc2kϕ+kπ)=k=J2k(M)cos(2π(fc2kfm)t+ϕc2kϕ+kπ)sin(2πfct+ϕc)sin(Mcos(2πfmt+ϕ))=sin(2πfct+ϕc)sin(Msin(π22πfmtϕ))=sin(2πfct+ϕc)[2k=0J2k+1(M)sin((2k+1)(π22πfmtϕ))]=2k=0J2k+1(M)sin(2πfct+ϕc)sin((2k+1)(π22πfmtϕ))=k=0J2k+1(M)[cos(2π(fc+(2k+1)fm)t+ϕc+(2k+1)ϕ(2k+1)π2)cos(2π(fc(2k+1)fm)t+ϕc(2k+1)ϕ+(2k+1)π2)]=k=0J2k+1(M)cos(2π(fc+(2k+1)fm)t+ϕc+(2k+1)ϕ(2k+1)π2)k=0J2k+1(M)(cos(2π(fc(2k+1)fm)t+ϕc(2k+1)ϕ+(2k+1)π2)=k=1(1)2k+1J2k+1(M)cos(2π(fc(2k+1)fm)t+ϕc(2k+1)ϕ+(2k+1)π2)k=0J2k+1(M)(cos(2π(fc(2k+1)fm)t+ϕc(2k+1)ϕ+(2k+1)π2)=k=J2k+1(M)(cos(2π(fc(2k+1)fm)t+ϕc(2k+1)ϕ+(2k+1)π2) 故可得 PM(t)=Ac[cos(2πfct+ϕc)cos(Mcos(2πfmt+ϕ))sin(2πfct+ϕc)sin(Mcos(2πfmt+ϕ))]=Ac[k=J2k(M)cos(2π(fc2kfm)t+ϕc2kϕ+kπ)+k=J2k+1(M)(cos(2π(fc(2k+1)fm)t+ϕc(2k+1)ϕ+(2k+1)π2)]=Ac[k=evenJk(M)cos(2π(fckfm)t+ϕckϕ+k2π)+k=oddJk(M)(cos(2π(fckfm)t+ϕckϕ+k2π)]=Ack=Jk(M)cos(2π(fckfm)t+ϕckϕ+k2π)
M0.2k2Jk(β)0,則頻寬 BW2fm

電路驗證

參考

類比與數位調變
何謂 I/Q 資料 (I/Q Data)?
瞭解無線的基礎科技
電視RF訊號, 為何影像要用AM調變 / 聲音要用FM調變
頻率調製
振幅調變
Why is NTSC color carrier frequency 3.57954545 MHz and not some other number that can be remembered easily?
你真的都搞懂了嗎?數位通訊新世代
通訊系統模擬
Analyzing an FM signal
Phase modulation

留言