[Circuit] Modulation

電路知識:Modulation
工具:Qucs

簡介:發射端將低頻訊號處理成高頻訊號以後,再傳送出去

主要的調變方法

  • 振幅調變(amplitude modulation,AM)
  • 頻率調變(Frequency modulation,FM)
  • 相位調變(Phase Modulation,PM)

AM (振幅調變)

$$ \begin{align*} c(t) &= A_c cos(2\pi f_ct+\phi _c)\\ m(t) &= M cos(2\pi f_mt+\phi )\\ AM(t) &= [1+m(t)]\cdot c(t)\\ &=\small{A_c cos(2\pi f_ct+\phi _c)+\frac{A_cM}{2} [cos(2\pi(f_c-f_m)t+\phi _c-\phi)+cos(2\pi(f_c+f_m)t+\phi _c+\phi)]}\\ M &< 1\\ \end{align*} $$
$$ \begin{align*} AM(t) &= [1+m(t)]\cdot c(t) \\ &=[1+M cos(2\pi f_mt+\phi )]\cdot A_c cos(2\pi f_ct+\phi _c)\\ &=A_c cos(2\pi f_ct+\phi _c)+M cos(2\pi f_mt+\phi )\cdot A_c cos(2\pi f_ct+\phi _c)\\ &=A_c cos(2\pi f_ct+\phi _c)+A_cM cos(2\pi f_ct+\phi _c) cos(2\pi f_mt+\phi )\\ &=A_c cos(2\pi f_ct+\phi _c)+\frac{A_cM}{2} [cos(2\pi f_ct+\phi _c-(2\pi f_mt+\phi) )+cos(2\pi f_ct+\phi _c+(2\pi f_mt+\phi))]\\ &=A_c cos(2\pi f_ct+\phi _c)+\frac{A_cM}{2} [cos(2\pi(f_c-f_m)t+\phi _c-\phi)+cos(2\pi(f_c+f_m)t+\phi _c+\phi)]\\ \end{align*} $$ 必要條件:\(1+m(t)>1\),故 \(M < 1\),否則會 overmodulation,訊號就不對了,因會使得輸出振幅為負的
頻寬 \(BW = 2f_m\)

電路驗證

角調變 定義

$$ \begin{align*} c(t) &= A_c cos(2\pi f_ct+\phi _c)\\ XM(t) &= A_c cos(2\pi f_ct+\phi _c+\phi _m(t))\\ \\ \theta(t) &= 2\pi f_ct+\phi _c+\phi _m(t)\\ f(t)&=f_c+\frac{1}{2\pi}\frac{\mathrm{d} \phi _m(t)}{\mathrm{d} t}\\ \end{align*} $$ 相位偏差:\(\phi _m(t) \)
頻率偏差 \(\Delta f\):\(\frac{1}{2\pi}\frac{\mathrm{d} \phi _m(t)}{\mathrm{d} t}\)
$$ \begin{align*} \frac{\mathrm{d} \theta(t)}{\mathrm{d} t} &=w(t)\\ &=2\pi f(t)\\ &=2\pi f_c+\frac{\mathrm{d} \phi _m(t)}{\mathrm{d} t}\\ f(t)&=f_c+\frac{1}{2\pi}\frac{\mathrm{d} \phi _m(t)}{\mathrm{d} t} \end{align*} $$

FM (頻率調變)

$$ \begin{align*} c(t) &= A_c cos(2\pi f_ct+\phi _c)\\ m(t) &= M cos(2\pi f_mt+\phi )\\ \\ \phi _m(t)&=k_f\int_{0}^{t}m(\tau) d\tau\\ FM(t) &=A_c cos\left (2\pi f_ct+\phi _c+\phi _m(t) \right)\\ &=A_c \sum_{k=-\infty }^{\infty}J_{k}(\beta)cos(2\pi (f_c+kf_m)t+\phi _c+k\phi )\\ \beta&=\frac{k_f M}{2\pi f_m}\\ \Delta f &= \beta f_m\\ \end{align*} $$ \(k_f\) 為自定頻率偏差函數,單位為 Hz/Volt
根據角調變
$$ \begin{align*} \frac{\mathrm{d} \phi _m(t)}{\mathrm{d} t}&=k_fm(t)\\ \phi _m(t)&=k_f\int_{0}^{t}m(\tau) d\tau\\ FM(t) &= A_c cos\left (2\pi f_ct+\phi _c+\phi _m(t) \right)\\ &= A_c cos \left (2\pi f_ct+\phi _c+k_f\int_{0}^{t}m(\tau) d\tau \right )\\ &= A_c cos\left (2\pi f_ct+\phi _c+k_f\int_{0}^{t}M cos(2\pi f_m\tau+\phi)\right ) \\ &= A_c cos\left (2\pi f_ct+\phi _c+k_f\frac{1}{2\pi f_m}(M sin(2\pi f_mt+\phi)) \right )\\ &= A_c cos\left (2\pi f_ct+\phi _c+\frac{k_f M}{2\pi f_m}sin(2\pi f_mt+\phi )\right ) \\ &= A_c cos\left (2\pi f_ct+\phi _c+\beta sin(2\pi f_mt+\phi )\right ) \\ &=A_c [cos(2\pi f_ct+\phi _c)cos(\beta sin(2\pi f_mt+\phi ))-sin(2\pi f_ct+\phi _c)sin(\beta sin(2\pi f_mt+\phi ))]\\ \end{align*} $$ 用上面倒數第二式求 \(\Delta f\)
$$ \begin{align*} \frac{\mathrm{d} \theta }{\mathrm{d} t} &= \frac{\mathrm{d} (2\pi f_ct+\phi _c+\beta sin(2\pi f_mt+\phi ))}{\mathrm{d} t}\\ &= 2\pi f_c+2\pi f_m \beta cos(2\pi f_mt+\phi )\\ &= w(t)\\ &= 2 \pi f(t)\\ f(t) &= f_c+\beta f_m cos(2\pi f_mt+\phi )\\ &= f_c+\Delta f \cdot cos(2\pi f_mt+\phi ) \end{align*} $$ 借由 bessel function
$$ \begin{align*} cos(zsin\theta ) & = J_0(z)+2\sum_{k=1}^{\infty }J_{2k}(z)cos(2k\theta )\\ sin(zsin\theta ) & = 2\sum_{k=0}^{\infty }J_{2k+1}(z)sin((2k+1)\theta )\\ J_{-n}(z)&=(-1)^nJ_n(z) \end{align*} $$ 可得
$$ \begin{align*} &cos(2\pi f_ct+\phi _c)cos(\beta sin(2\pi f_mt+\phi ))\\ =&cos(2\pi f_ct+\phi _c)\left [ J_0(\beta)+2\sum_{k=1}^{\infty }J_{2k}(\beta)cos(2k(2\pi f_mt+\phi ) ) \right ]\\ =&J_0(\beta)cos(2\pi f_ct+\phi _c)+ 2\sum_{k=1}^{\infty }J_{2k}(\beta)cos(2\pi f_ct+\phi _c)cos(2k(2\pi f_mt+\phi ) ) \\ =&J_0(\beta)cos(2\pi f_ct+\phi _c)+ \sum_{k=1}^{\infty }J_{2k}(\beta)[cos(2\pi (f_c+2kf_m)t+\phi _c+2k\phi )+cos(2\pi (f_c-2kf_m)t+\phi _c-2k\phi ) ] \\ =&J_0(\beta)cos(2\pi f_ct+\phi _c)+ \sum_{k=1}^{\infty }J_{2k}(\beta)cos(2\pi (f_c+2kf_m)t+\phi _c+2k\phi )+\sum_{k=1}^{\infty }J_{2k}(\beta)cos(2\pi (f_c-2kf_m)t+\phi _c-2k\phi ) \\ =&J_0(\beta)cos(2\pi f_ct+\phi _c)+ \sum_{k=1}^{\infty }J_{2k}(\beta)cos(2\pi (f_c+2kf_m)t+\phi _c+2k\phi )+\sum_{k=-\infty }^{-1}(-1)^{2k}J_{2k}(\beta)cos(2\pi (f_c+2kf_m)t+\phi _c+2k\phi ) \\ =&\sum_{k=-\infty }^{\infty }J_{2k}(\beta)cos(2\pi (f_c+2kf_m)t+\phi _c+2k\phi )\\ \\ &sin(2\pi f_ct+\phi _c)sin(\beta sin(2\pi f_mt+\phi ))\\ =&sin(2\pi f_ct+\phi _c)\left [ 2\sum_{k=0}^{\infty }J_{2k+1}(\beta)sin((2k+1)(2\pi f_mt+\phi ) ) \right ]\\ =& 2\sum_{k=0}^{\infty }J_{2k+1}(\beta)sin(2\pi f_ct+\phi _c)sin((2k+1)(2\pi f_mt+\phi ) ) \\ =& \sum_{k=0}^{\infty }J_{2k+1}(\beta)[cos(2\pi (f_c-(2k+1)f_m)t+\phi _c-(2k+1)\phi)-cos(2\pi (f_c+(2k+1)f_m)t+\phi _c+(2k+1)\phi) ] \\ =& \sum_{k=0}^{\infty }J_{2k+1}(\beta)cos(2\pi (f_c-(2k+1)f_m)t+\phi _c-(2k+1)\phi)-\sum_{k=0}^{\infty }J_{2k+1}(\beta)(cos(2\pi (f_c+(2k+1)f_m)t+\phi _c+(2k+1)\phi) ] \\ =& \sum_{k=-\infty}^{-1 }(-1)^{2k+1}J_{2k+1}(\beta)cos(2\pi (f_c+(2k+1)f_m)t+\phi _c+(2k+1)\phi)-\sum_{k=0}^{\infty }J_{2k+1}(\beta)(cos(2\pi (f_c+(2k+1)f_m)t+\phi _c+(2k+1)\phi) ] \\ =& -\sum_{k=-\infty }^{\infty }J_{2k+1}(\beta)(cos(2\pi (f_c+(2k+1)f_m)t+\phi _c+(2k+1)\phi) \\ \end{align*} $$ 故可得 $$ \begin{align*} FM(t) &=A_c [cos(2\pi f_ct+\phi _c)cos(\beta sin(2\pi f_mt+\phi ))-sin(2\pi f_ct+\phi _c)sin(\beta sin(2\pi f_mt+\phi ))]\\ &=A_c \left [\sum_{k=-\infty }^{\infty }J_{2k}(\beta)cos(2\pi (f_c+2kf_m)t+\phi _c+2k\phi )+\sum_{k=-\infty }^{\infty }J_{2k+1}(\beta)(cos(2\pi (f_c+(2k+1)f_m)t+\phi _c+(2k+1)\phi) \right ]\\ &=A_c \left [\sum_{k=even }J_{k}(\beta)cos(2\pi (f_c+kf_m)t+\phi _c+k\phi )+\sum_{k=odd }J_{k}(\beta)(cos(2\pi (f_c+kf_m)t+\phi _c+k\phi) \right ]\\ &=A_c \sum_{k=-\infty }^{\infty}J_{k}(\beta)cos(2\pi (f_c+kf_m)t+\phi _c+k\phi )\\ \end{align*} $$
當 \(\beta \leq 0.2\) 且 \(k\geq 2\),\(J_{k}(\beta)\cong 0\),則頻寬 \(BW\cong 2f_m\)

電路驗證

PM (相位調變)

$$ \begin{align*} c(t) &= A_c cos(2\pi f_ct+\phi _c)\\ m(t) &= M cos(2\pi f_mt+\phi )\\ \\ PM(t) &=A_c cos\left (2\pi f_ct+\phi _c+m(t) \right)\\ &=A_c \sum_{k=-\infty }^{\infty}J_{k}(M)cos(2\pi (f_c-kf_m)t+\phi _c-k\phi +\frac{k}{2}\pi)\\ \Delta f &= M f_m\\ \end{align*} $$
$$ \begin{align*} PM(t) &= A_c cos\left (2\pi f_ct+\phi _c+m(t) \right)\\ &= A_c cos\left (2\pi f_ct+\phi _c+M cos(2\pi f_m t+\phi)\right ) \\ &=A_c [cos(2\pi f_ct+\phi _c)cos(M cos(2\pi f_m t+\phi))-sin(2\pi f_ct+\phi _c)sin(M cos(2\pi f_m t+\phi))]\\ \end{align*} $$ 用上面倒數第二式求 \(\Delta f\)
$$ \begin{align*} \frac{\mathrm{d} \theta }{\mathrm{d} t} &= \frac{\mathrm{d} (2\pi f_ct+\phi _c+M cos(2\pi f_m t+\phi))}{\mathrm{d} t}\\ &= 2\pi f_c-2\pi f_m M sin(2\pi f_m t+\phi)\\ &= w(t)\\ &= 2 \pi f(t)\\ f(t) &= f_c-M f_m sin(2\pi f_m t+\phi)\\ &= f_c+\Delta f \cdot sin(2\pi f_m t+\phi) \end{align*} $$ 借由 bessel function
$$ \begin{align*} cos(zsin\theta ) & = J_0(z)+2\sum_{k=1}^{\infty }J_{2k}(z)cos(2k\theta )\\ sin(zsin\theta ) & = 2\sum_{k=0}^{\infty }J_{2k+1}(z)sin((2k+1)\theta )\\ J_{-n}(z)&=(-1)^nJ_n(z) \end{align*} $$ 可得
$$ \begin{align*} &cos(2\pi f_ct+\phi _c)cos(M cos(2\pi f_m t+\phi))\\ =&cos(2\pi f_ct+\phi _c)cos(M sin(\frac{\pi}{2}-2\pi f_m t-\phi))\\ =&cos(2\pi f_ct+\phi _c)\left [ J_0(M)+2\sum_{k=1}^{\infty }J_{2k}(M)cos(2k(\frac{\pi}{2}-2\pi f_m t-\phi) ) \right ]\\ =&J_0(M)cos(2\pi f_ct+\phi _c)+ 2\sum_{k=1}^{\infty }J_{2k}(M)cos(2\pi f_ct+\phi _c)cos(2k(\frac{\pi}{2}-2\pi f_m t-\phi) ) \\ =&J_0(M)cos(2\pi f_ct+\phi _c)+ \sum_{k=1}^{\infty }J_{2k}(M)[cos(2\pi (f_c-2kf_m)t+\phi _c-2k\phi+k\pi )+cos(2\pi (f_c+2kf_m)t+\phi _c+2k\phi-k\pi ) ] \\ =&J_0(M)cos(2\pi f_ct+\phi _c)+\sum_{k=1}^{\infty }J_{2k}(M)cos(2\pi (f_c-2kf_m)t+\phi _c-2k\phi +k\pi) + \sum_{k=1}^{\infty }J_{2k}(M)cos(2\pi (f_c+2kf_m)t+\phi _c+2k\phi -k\pi) \\ =&J_0(M)cos(2\pi f_ct+\phi _c)+\sum_{k=1}^{\infty }J_{2k}(M)cos(2\pi (f_c-2kf_m)t+\phi _c-2k\phi +k\pi)+ \sum_{k=-\infty }^{-1}(-1)^{2k}J_{2k}(M)cos(2\pi (f_c-2kf_m)t+\phi _c-2k\phi +k\pi) \\ =&\sum_{k=-\infty }^{\infty }J_{2k}(M)cos(2\pi (f_c-2kf_m)t+\phi _c-2k\phi +k\pi)\\ \\ &sin(2\pi f_ct+\phi _c)sin(M cos(2\pi f_m t+\phi))\\ =&sin(2\pi f_ct+\phi _c)sin(M sin(\frac{\pi}{2}-2\pi f_mt-\phi ))\\ =&sin(2\pi f_ct+\phi _c)\left [ 2\sum_{k=0}^{\infty }J_{2k+1}(M)sin((2k+1)(\frac{\pi}{2}-2\pi f_mt-\phi ) ) \right ]\\ =& 2\sum_{k=0}^{\infty }J_{2k+1}(M)sin(2\pi f_ct+\phi _c)sin((2k+1)(\frac{\pi}{2}-2\pi f_mt-\phi ) ) \\ =& \sum_{k=0}^{\infty }J_{2k+1}(M)[cos(2\pi (f_c+(2k+1)f_m)t+\phi _c+(2k+1)\phi-(2k+1)\frac{\pi}{2})-cos(2\pi (f_c-(2k+1)f_m)t+\phi _c-(2k+1)\phi+(2k+1)\frac{\pi}{2}) ] \\ =& \sum_{k=0}^{\infty }J_{2k+1}(M)cos(2\pi (f_c+(2k+1)f_m)t+\phi _c+(2k+1)\phi-(2k+1)\frac{\pi}{2})-\sum_{k=0}^{\infty }J_{2k+1}(M)(cos(2\pi (f_c-(2k+1)f_m)t+\phi _c-(2k+1)\phi+(2k+1)\frac{\pi}{2}) \\ =& \sum_{k=-\infty}^{-1 }(-1)^{2k+1}J_{2k+1}(M)cos(2\pi (f_c-(2k+1)f_m)t+\phi _c-(2k+1)\phi+(2k+1)\frac{\pi}{2})-\sum_{k=0}^{\infty }J_{2k+1}(M)(cos(2\pi (f_c-(2k+1)f_m)t+\phi _c-(2k+1)\phi+(2k+1)\frac{\pi}{2}) \\ =& -\sum_{k=-\infty }^{\infty }J_{2k+1}(M)(cos(2\pi (f_c-(2k+1)f_m)t+\phi _c-(2k+1)\phi+(2k+1)\frac{\pi}{2}) \\ \end{align*} $$ 故可得 $$ \begin{align*} PM(t) &=A_c [cos(2\pi f_ct+\phi _c)cos(M cos(2\pi f_m t+\phi))-sin(2\pi f_ct+\phi _c)sin(M cos(2\pi f_m t+\phi))]\\ &=A_c \left [\sum_{k=-\infty }^{\infty }J_{2k}(M)cos(2\pi (f_c-2kf_m)t+\phi _c-2k\phi +k\pi)+\sum_{k=-\infty }^{\infty }J_{2k+1}(M)(cos(2\pi (f_c-(2k+1)f_m)t+\phi _c-(2k+1)\phi+(2k+1)\frac{\pi}{2}) \right ]\\ &=A_c \left [\sum_{k=even }J_{k}(M)cos(2\pi (f_c-kf_m)t+\phi _c-k\phi +\frac{k}{2}\pi)+\sum_{k=odd }J_{k}(M)(cos(2\pi (f_c-kf_m)t+\phi _c-k\phi+\frac{k}{2}\pi) \right ]\\ &=A_c \sum_{k=-\infty }^{\infty}J_{k}(M)cos(2\pi (f_c-kf_m)t+\phi _c-k\phi +\frac{k}{2}\pi)\\ \end{align*} $$
當 \(M \leq 0.2\) 且 \(k\geq 2\),\(J_{k}(\beta)\cong 0\),則頻寬 \(BW\cong 2f_m\)

電路驗證

參考

類比與數位調變
何謂 I/Q 資料 (I/Q Data)?
瞭解無線的基礎科技
電視RF訊號, 為何影像要用AM調變 / 聲音要用FM調變
頻率調製
振幅調變
Why is NTSC color carrier frequency 3.57954545 MHz and not some other number that can be remembered easily?
你真的都搞懂了嗎?數位通訊新世代
通訊系統模擬
Analyzing an FM signal
Phase modulation

留言