電路知識:Modulation
工具:Qucs
簡介:發射端將低頻訊號處理成高頻訊號以後,再傳送出去
主要的調變方法
- 振幅調變(amplitude modulation,AM)
- 頻率調變(Frequency modulation,FM)
- 相位調變(Phase Modulation,PM)
AM (振幅調變)
$$
\begin{align*}
c(t) &= A_c cos(2\pi f_ct+\phi _c)\\
m(t) &= M cos(2\pi f_mt+\phi )\\
AM(t) &= [1+m(t)]\cdot c(t)\\
&=\small{A_c cos(2\pi f_ct+\phi _c)+\frac{A_cM}{2} [cos(2\pi(f_c-f_m)t+\phi _c-\phi)+cos(2\pi(f_c+f_m)t+\phi _c+\phi)]}\\
M &< 1\\
\end{align*}
$$
$$
\begin{align*}
AM(t) &= [1+m(t)]\cdot c(t) \\
&=[1+M cos(2\pi f_mt+\phi )]\cdot A_c cos(2\pi f_ct+\phi _c)\\
&=A_c cos(2\pi f_ct+\phi _c)+M cos(2\pi f_mt+\phi )\cdot A_c cos(2\pi f_ct+\phi _c)\\
&=A_c cos(2\pi f_ct+\phi _c)+A_cM cos(2\pi f_ct+\phi _c) cos(2\pi f_mt+\phi )\\
&=A_c cos(2\pi f_ct+\phi _c)+\frac{A_cM}{2} [cos(2\pi f_ct+\phi _c-(2\pi f_mt+\phi) )+cos(2\pi f_ct+\phi _c+(2\pi f_mt+\phi))]\\
&=A_c cos(2\pi f_ct+\phi _c)+\frac{A_cM}{2} [cos(2\pi(f_c-f_m)t+\phi _c-\phi)+cos(2\pi(f_c+f_m)t+\phi _c+\phi)]\\
\end{align*}
$$
必要條件:\(1+m(t)>1\),故 \(M < 1\),否則會 overmodulation,訊號就不對了,因會使得輸出振幅為負的
頻寬 \(BW = 2f_m\)
電路驗證
角調變 定義
$$
\begin{align*}
c(t) &= A_c cos(2\pi f_ct+\phi _c)\\
XM(t) &= A_c cos(2\pi f_ct+\phi _c+\phi _m(t))\\
\\
\theta(t) &= 2\pi f_ct+\phi _c+\phi _m(t)\\
f(t)&=f_c+\frac{1}{2\pi}\frac{\mathrm{d} \phi _m(t)}{\mathrm{d} t}\\
\end{align*}
$$
相位偏差:\(\phi _m(t) \)
頻率偏差 \(\Delta f\):\(\frac{1}{2\pi}\frac{\mathrm{d} \phi _m(t)}{\mathrm{d} t}\)
$$
\begin{align*}
\frac{\mathrm{d} \theta(t)}{\mathrm{d} t} &=w(t)\\
&=2\pi f(t)\\
&=2\pi f_c+\frac{\mathrm{d} \phi _m(t)}{\mathrm{d} t}\\
f(t)&=f_c+\frac{1}{2\pi}\frac{\mathrm{d} \phi _m(t)}{\mathrm{d} t}
\end{align*}
$$
FM (頻率調變)
$$
\begin{align*}
c(t) &= A_c cos(2\pi f_ct+\phi _c)\\
m(t) &= M cos(2\pi f_mt+\phi )\\
\\
\phi _m(t)&=k_f\int_{0}^{t}m(\tau) d\tau\\
FM(t) &=A_c cos\left (2\pi f_ct+\phi _c+\phi _m(t) \right)\\
&=A_c \sum_{k=-\infty }^{\infty}J_{k}(\beta)cos(2\pi (f_c+kf_m)t+\phi _c+k\phi )\\
\beta&=\frac{k_f M}{2\pi f_m}\\
\Delta f &= \beta f_m\\
\end{align*}
$$
\(k_f\) 為自定頻率偏差函數,單位為 Hz/Volt
根據角調變
$$
\begin{align*}
\frac{\mathrm{d} \phi _m(t)}{\mathrm{d} t}&=k_fm(t)\\
\phi _m(t)&=k_f\int_{0}^{t}m(\tau) d\tau\\
FM(t) &= A_c cos\left (2\pi f_ct+\phi _c+\phi _m(t) \right)\\
&= A_c cos \left (2\pi f_ct+\phi _c+k_f\int_{0}^{t}m(\tau) d\tau \right )\\
&= A_c cos\left (2\pi f_ct+\phi _c+k_f\int_{0}^{t}M cos(2\pi f_m\tau+\phi)\right ) \\
&= A_c cos\left (2\pi f_ct+\phi _c+k_f\frac{1}{2\pi f_m}(M sin(2\pi f_mt+\phi)) \right )\\
&= A_c cos\left (2\pi f_ct+\phi _c+\frac{k_f M}{2\pi f_m}sin(2\pi f_mt+\phi )\right ) \\
&= A_c cos\left (2\pi f_ct+\phi _c+\beta sin(2\pi f_mt+\phi )\right ) \\
&=A_c [cos(2\pi f_ct+\phi _c)cos(\beta sin(2\pi f_mt+\phi ))-sin(2\pi f_ct+\phi _c)sin(\beta sin(2\pi f_mt+\phi ))]\\
\end{align*}
$$
用上面倒數第二式求 \(\Delta f\)
$$
\begin{align*}
\frac{\mathrm{d} \theta }{\mathrm{d} t} &= \frac{\mathrm{d} (2\pi f_ct+\phi _c+\beta sin(2\pi f_mt+\phi ))}{\mathrm{d} t}\\
&= 2\pi f_c+2\pi f_m \beta cos(2\pi f_mt+\phi )\\
&= w(t)\\
&= 2 \pi f(t)\\
f(t) &= f_c+\beta f_m cos(2\pi f_mt+\phi )\\
&= f_c+\Delta f \cdot cos(2\pi f_mt+\phi )
\end{align*}
$$
借由 bessel function
$$
\begin{align*}
cos(zsin\theta ) & = J_0(z)+2\sum_{k=1}^{\infty }J_{2k}(z)cos(2k\theta )\\
sin(zsin\theta ) & = 2\sum_{k=0}^{\infty }J_{2k+1}(z)sin((2k+1)\theta )\\
J_{-n}(z)&=(-1)^nJ_n(z)
\end{align*}
$$
可得
$$
\begin{align*}
&cos(2\pi f_ct+\phi _c)cos(\beta sin(2\pi f_mt+\phi ))\\
=&cos(2\pi f_ct+\phi _c)\left [ J_0(\beta)+2\sum_{k=1}^{\infty }J_{2k}(\beta)cos(2k(2\pi f_mt+\phi ) ) \right ]\\
=&J_0(\beta)cos(2\pi f_ct+\phi _c)+ 2\sum_{k=1}^{\infty }J_{2k}(\beta)cos(2\pi f_ct+\phi _c)cos(2k(2\pi f_mt+\phi ) ) \\
=&J_0(\beta)cos(2\pi f_ct+\phi _c)+ \sum_{k=1}^{\infty }J_{2k}(\beta)[cos(2\pi (f_c+2kf_m)t+\phi _c+2k\phi )+cos(2\pi (f_c-2kf_m)t+\phi _c-2k\phi ) ] \\
=&J_0(\beta)cos(2\pi f_ct+\phi _c)+ \sum_{k=1}^{\infty }J_{2k}(\beta)cos(2\pi (f_c+2kf_m)t+\phi _c+2k\phi )+\sum_{k=1}^{\infty }J_{2k}(\beta)cos(2\pi (f_c-2kf_m)t+\phi _c-2k\phi ) \\
=&J_0(\beta)cos(2\pi f_ct+\phi _c)+ \sum_{k=1}^{\infty }J_{2k}(\beta)cos(2\pi (f_c+2kf_m)t+\phi _c+2k\phi )+\sum_{k=-\infty }^{-1}(-1)^{2k}J_{2k}(\beta)cos(2\pi (f_c+2kf_m)t+\phi _c+2k\phi ) \\
=&\sum_{k=-\infty }^{\infty }J_{2k}(\beta)cos(2\pi (f_c+2kf_m)t+\phi _c+2k\phi )\\
\\
&sin(2\pi f_ct+\phi _c)sin(\beta sin(2\pi f_mt+\phi ))\\
=&sin(2\pi f_ct+\phi _c)\left [ 2\sum_{k=0}^{\infty }J_{2k+1}(\beta)sin((2k+1)(2\pi f_mt+\phi ) ) \right ]\\
=& 2\sum_{k=0}^{\infty }J_{2k+1}(\beta)sin(2\pi f_ct+\phi _c)sin((2k+1)(2\pi f_mt+\phi ) ) \\
=& \sum_{k=0}^{\infty }J_{2k+1}(\beta)[cos(2\pi (f_c-(2k+1)f_m)t+\phi _c-(2k+1)\phi)-cos(2\pi (f_c+(2k+1)f_m)t+\phi _c+(2k+1)\phi) ] \\
=& \sum_{k=0}^{\infty }J_{2k+1}(\beta)cos(2\pi (f_c-(2k+1)f_m)t+\phi _c-(2k+1)\phi)-\sum_{k=0}^{\infty }J_{2k+1}(\beta)(cos(2\pi (f_c+(2k+1)f_m)t+\phi _c+(2k+1)\phi) ] \\
=& \sum_{k=-\infty}^{-1 }(-1)^{2k+1}J_{2k+1}(\beta)cos(2\pi (f_c+(2k+1)f_m)t+\phi _c+(2k+1)\phi)-\sum_{k=0}^{\infty }J_{2k+1}(\beta)(cos(2\pi (f_c+(2k+1)f_m)t+\phi _c+(2k+1)\phi) ] \\
=& -\sum_{k=-\infty }^{\infty }J_{2k+1}(\beta)(cos(2\pi (f_c+(2k+1)f_m)t+\phi _c+(2k+1)\phi) \\
\end{align*}
$$
故可得
$$
\begin{align*}
FM(t) &=A_c [cos(2\pi f_ct+\phi _c)cos(\beta sin(2\pi f_mt+\phi ))-sin(2\pi f_ct+\phi _c)sin(\beta sin(2\pi f_mt+\phi ))]\\
&=A_c \left [\sum_{k=-\infty }^{\infty }J_{2k}(\beta)cos(2\pi (f_c+2kf_m)t+\phi _c+2k\phi )+\sum_{k=-\infty }^{\infty }J_{2k+1}(\beta)(cos(2\pi (f_c+(2k+1)f_m)t+\phi _c+(2k+1)\phi) \right ]\\
&=A_c \left [\sum_{k=even }J_{k}(\beta)cos(2\pi (f_c+kf_m)t+\phi _c+k\phi )+\sum_{k=odd }J_{k}(\beta)(cos(2\pi (f_c+kf_m)t+\phi _c+k\phi) \right ]\\
&=A_c \sum_{k=-\infty }^{\infty}J_{k}(\beta)cos(2\pi (f_c+kf_m)t+\phi _c+k\phi )\\
\end{align*}
$$
當 \(\beta \leq 0.2\) 且 \(k\geq 2\),\(J_{k}(\beta)\cong 0\),則頻寬 \(BW\cong 2f_m\)
電路驗證
PM (相位調變)
$$
\begin{align*}
c(t) &= A_c cos(2\pi f_ct+\phi _c)\\
m(t) &= M cos(2\pi f_mt+\phi )\\
\\
PM(t) &=A_c cos\left (2\pi f_ct+\phi _c+m(t) \right)\\
&=A_c \sum_{k=-\infty }^{\infty}J_{k}(M)cos(2\pi (f_c-kf_m)t+\phi _c-k\phi +\frac{k}{2}\pi)\\
\Delta f &= M f_m\\
\end{align*}
$$
$$
\begin{align*}
PM(t) &= A_c cos\left (2\pi f_ct+\phi _c+m(t) \right)\\
&= A_c cos\left (2\pi f_ct+\phi _c+M cos(2\pi f_m t+\phi)\right ) \\
&=A_c [cos(2\pi f_ct+\phi _c)cos(M cos(2\pi f_m t+\phi))-sin(2\pi f_ct+\phi _c)sin(M cos(2\pi f_m t+\phi))]\\
\end{align*}
$$
用上面倒數第二式求 \(\Delta f\)
$$
\begin{align*}
\frac{\mathrm{d} \theta }{\mathrm{d} t} &= \frac{\mathrm{d} (2\pi f_ct+\phi _c+M cos(2\pi f_m t+\phi))}{\mathrm{d} t}\\
&= 2\pi f_c-2\pi f_m M sin(2\pi f_m t+\phi)\\
&= w(t)\\
&= 2 \pi f(t)\\
f(t) &= f_c-M f_m sin(2\pi f_m t+\phi)\\
&= f_c+\Delta f \cdot sin(2\pi f_m t+\phi)
\end{align*}
$$
借由 bessel function
$$
\begin{align*}
cos(zsin\theta ) & = J_0(z)+2\sum_{k=1}^{\infty }J_{2k}(z)cos(2k\theta )\\
sin(zsin\theta ) & = 2\sum_{k=0}^{\infty }J_{2k+1}(z)sin((2k+1)\theta )\\
J_{-n}(z)&=(-1)^nJ_n(z)
\end{align*}
$$
可得
$$
\begin{align*}
&cos(2\pi f_ct+\phi _c)cos(M cos(2\pi f_m t+\phi))\\
=&cos(2\pi f_ct+\phi _c)cos(M sin(\frac{\pi}{2}-2\pi f_m t-\phi))\\
=&cos(2\pi f_ct+\phi _c)\left [ J_0(M)+2\sum_{k=1}^{\infty }J_{2k}(M)cos(2k(\frac{\pi}{2}-2\pi f_m t-\phi) ) \right ]\\
=&J_0(M)cos(2\pi f_ct+\phi _c)+ 2\sum_{k=1}^{\infty }J_{2k}(M)cos(2\pi f_ct+\phi _c)cos(2k(\frac{\pi}{2}-2\pi f_m t-\phi) ) \\
=&J_0(M)cos(2\pi f_ct+\phi _c)+ \sum_{k=1}^{\infty }J_{2k}(M)[cos(2\pi (f_c-2kf_m)t+\phi _c-2k\phi+k\pi )+cos(2\pi (f_c+2kf_m)t+\phi _c+2k\phi-k\pi ) ] \\
=&J_0(M)cos(2\pi f_ct+\phi _c)+\sum_{k=1}^{\infty }J_{2k}(M)cos(2\pi (f_c-2kf_m)t+\phi _c-2k\phi +k\pi) + \sum_{k=1}^{\infty }J_{2k}(M)cos(2\pi (f_c+2kf_m)t+\phi _c+2k\phi -k\pi) \\
=&J_0(M)cos(2\pi f_ct+\phi _c)+\sum_{k=1}^{\infty }J_{2k}(M)cos(2\pi (f_c-2kf_m)t+\phi _c-2k\phi +k\pi)+ \sum_{k=-\infty }^{-1}(-1)^{2k}J_{2k}(M)cos(2\pi (f_c-2kf_m)t+\phi _c-2k\phi +k\pi) \\
=&\sum_{k=-\infty }^{\infty }J_{2k}(M)cos(2\pi (f_c-2kf_m)t+\phi _c-2k\phi +k\pi)\\
\\
&sin(2\pi f_ct+\phi _c)sin(M cos(2\pi f_m t+\phi))\\
=&sin(2\pi f_ct+\phi _c)sin(M sin(\frac{\pi}{2}-2\pi f_mt-\phi ))\\
=&sin(2\pi f_ct+\phi _c)\left [ 2\sum_{k=0}^{\infty }J_{2k+1}(M)sin((2k+1)(\frac{\pi}{2}-2\pi f_mt-\phi ) ) \right ]\\
=& 2\sum_{k=0}^{\infty }J_{2k+1}(M)sin(2\pi f_ct+\phi _c)sin((2k+1)(\frac{\pi}{2}-2\pi f_mt-\phi ) ) \\
=& \sum_{k=0}^{\infty }J_{2k+1}(M)[cos(2\pi (f_c+(2k+1)f_m)t+\phi _c+(2k+1)\phi-(2k+1)\frac{\pi}{2})-cos(2\pi (f_c-(2k+1)f_m)t+\phi _c-(2k+1)\phi+(2k+1)\frac{\pi}{2}) ] \\
=& \sum_{k=0}^{\infty }J_{2k+1}(M)cos(2\pi (f_c+(2k+1)f_m)t+\phi _c+(2k+1)\phi-(2k+1)\frac{\pi}{2})-\sum_{k=0}^{\infty }J_{2k+1}(M)(cos(2\pi (f_c-(2k+1)f_m)t+\phi _c-(2k+1)\phi+(2k+1)\frac{\pi}{2}) \\
=& \sum_{k=-\infty}^{-1 }(-1)^{2k+1}J_{2k+1}(M)cos(2\pi (f_c-(2k+1)f_m)t+\phi _c-(2k+1)\phi+(2k+1)\frac{\pi}{2})-\sum_{k=0}^{\infty }J_{2k+1}(M)(cos(2\pi (f_c-(2k+1)f_m)t+\phi _c-(2k+1)\phi+(2k+1)\frac{\pi}{2}) \\
=& -\sum_{k=-\infty }^{\infty }J_{2k+1}(M)(cos(2\pi (f_c-(2k+1)f_m)t+\phi _c-(2k+1)\phi+(2k+1)\frac{\pi}{2}) \\
\end{align*}
$$
故可得
$$
\begin{align*}
PM(t) &=A_c [cos(2\pi f_ct+\phi _c)cos(M cos(2\pi f_m t+\phi))-sin(2\pi f_ct+\phi _c)sin(M cos(2\pi f_m t+\phi))]\\
&=A_c \left [\sum_{k=-\infty }^{\infty }J_{2k}(M)cos(2\pi (f_c-2kf_m)t+\phi _c-2k\phi +k\pi)+\sum_{k=-\infty }^{\infty }J_{2k+1}(M)(cos(2\pi (f_c-(2k+1)f_m)t+\phi _c-(2k+1)\phi+(2k+1)\frac{\pi}{2}) \right ]\\
&=A_c \left [\sum_{k=even }J_{k}(M)cos(2\pi (f_c-kf_m)t+\phi _c-k\phi +\frac{k}{2}\pi)+\sum_{k=odd }J_{k}(M)(cos(2\pi (f_c-kf_m)t+\phi _c-k\phi+\frac{k}{2}\pi) \right ]\\
&=A_c \sum_{k=-\infty }^{\infty}J_{k}(M)cos(2\pi (f_c-kf_m)t+\phi _c-k\phi +\frac{k}{2}\pi)\\
\end{align*}
$$
當 \(M \leq 0.2\) 且 \(k\geq 2\),\(J_{k}(\beta)\cong 0\),則頻寬 \(BW\cong 2f_m\)
電路驗證
參考
類比與數位調變
何謂 I/Q 資料 (I/Q Data)?
瞭解無線的基礎科技
電視RF訊號, 為何影像要用AM調變 / 聲音要用FM調變
頻率調製
振幅調變
Why is NTSC color carrier frequency 3.57954545 MHz and not some other number that can be remembered easily?
你真的都搞懂了嗎?數位通訊新世代
通訊系統模擬
Analyzing an FM signal
Phase modulation
留言
張貼留言